Standardized Visual Search Pattern method

Visual search pattern techniques include:
- Minimum # of user waypoints
- GPS nav data displays - Track (TRK), Bearing to Waypoint (BRG), Distance to Waypoint (DIS), Cross Track Error (XTK) and Ground Speed (GS)
- GPS OBS course line selection
- Setting Magnetic Variation to true North

Five primary visual search patterns - Parallel Line, Creeping Line, Sector Search, Expanding Square and Route Search

Two less common search patterns - Parallelogram and Random Polygonal shapes

G1000 Initial setup

Many user options can be changed

Assume previous crew made changes

Restore to factory settings, delete all flight plans and user waypoints

Avoid the “what's it doing?” & “why does it look like that?” syndrome

G1000 Initial setup cont...

Preferred Setup

MFD DATA BAR
Field 1 - GS
Field 2 - XTK
Field 3 - TRK
Field 4 - BRG
GPS CDI
SELECTED – 3.3NM
G1000 Initial setup cont...

All Methods - G1000 Core Skills
The MP and MO should master the following core skills in order to fly the search patterns:

- Entering user waypoints by lat/long, by using reference waypoints (radial and distance) and by using panning feature
- Autopilot flying in NAV & HDG mode and seamless transitions in and out of autopilot (KAP140) and CWS operations (GFC700)
- Using the OBS & course selector

Flying with the KAP140 & GFC700 autopilots
KAP140 A/P is operationally limited to 80 - 160 KIAS, the GFC700 is limited to 70 - 165 KIAS

- Monitor airspeed as power changes are made.
- The autopilot will command pitch to maintain the set altitude regardless of airspeed impact, it will fly the aircraft into a stall if power is not managed accordingly.
- Autopilot turns are made at standard rate, turns may need to be made manually:
 - KAP140 - disengage then reengage the A/P when re-established on the next segment of the search pattern.
 - GFC700 - the CWS button can be used to make the turns.
- The blue track vector arrow can be used to assist in turns, the end of the arrow is your predicted position in 60 seconds, a 90 degree turn at std. rate takes 30 seconds.

Flying with the KAP140 autopilot
Care must be taken when disengaging and re-engaging the autopilot since altitude will not automatically ARM and capture.

- The KAP140 A/P captures the VS at the moment the A/P is turned on.
- The altitude must be ARMed, use VS mode to maneuver the aircraft back to the search pattern altitude from above or below as appropriate.

Flying with the KAP140 & GFC700 autopilots
The general sequence for autopilot operations for faster than standard rate turns is as follows. It is assumed that the A/P is in HDG mode tracking a GPS course line or XTK to course line in OBS mode:

1) Press OBS soft key
2) Change course using CRS knob to direction of next leg
3) Disconnect the A/P
4) Turn to intercept the next leg of the pattern
5) Engage A/P and press ALT to capture current altitude
6) Adjust ALT (UP or DOWN) as needed to reach search altitude - 20 feet increments per button push.
Flying with the KAP140 &
GFC 700 autopilots

GFC 700 autopilot
1. Activate next leg of flight plan (OBS mode is automatically cancelled)
2. Press OBS soft key
3. Change course using CRS knob to direction of next leg
4. Hold CWS button and make the turn to intercept the next course line and maneuver the aircraft to the desired search altitude, then release CWS button
5. Synchronize the HDG bug
6. Release CWS button

Parallel Track – The Structure of the Grid

Parallel Line (Grid) Search

1. Input user waypoint at grid entry point by Lat/Long
2. Load a "direct to" user waypoint flight plan
3. Rotate the course line (OBS) to the direction of the first track then fly the track. This first track will establish the "base line" for subsequent parallel tracks
4. At the end of the first track and at least 0.5NM outside the grid turn to establish a new track in the opposite direction at a distance XTK= track spacing (e.g. 1 nm for the second track and 2 nm for the third track etc.)
5. For NS tracks end of grid can be established by DIS from User Waypoint (see next slide)
6. Fly each track adjusting heading to achieve the desired TRK while maintaining desired XTK from the base line
7. The entry edge of the grid can be established by BRG to WPT, in the example given on next slide BRG=090 on entry edge of grid
8. Repeat until the grid is complete

Creeping Line Search (GPS arc method)

1. Determine true course between beginning point and end point of search from sectional
2. Insert a waypoint 99 miles beyond the start point of the creeping line, enter a flight plan from start to waypoint 99 miles beyond, enter a course of 90° prior to the waypoint
3. Desired track for left offset of creeping line is DTK - 90°, Right offset of creeping line is DTK + 90°
4. Approach the beginning point from the right side of the search course so that aircraft is established on creeping line track (DTK – 90°) prior to crossing search course.
5. When the Cross Track Error (XTK) readout indicates that the aircraft is at the Offset plus at least + 0.5 NM from the course line, perform a turn to intercept the reciprocal track (DTK + 90°)
6. Adjust the turn as necessary so that the aircraft is closer to the course end point by distance equal to track spacing and on a ground line perpendicular to the course line
7. Continue this process until the search pattern is completed.
Sector Search

Single User waypoint DIS, TRK and OBS

1. Input user waypoint for center of sector search by Lat/Long.
2. Enter a flight plan from the departure airport or present position to the center of the sector search, position aircraft to intercept and fly inbound to the search center on the radial closest to the direction of flight. Select this radial using the OBS function. Fly in A/P HDG or NAV mode.
3. After arrival at the search center continue to fly the same track out to the search radius on the other side of the center using DIS to verify position from the center and the OBS line for course guidance.
4. When DIS > search radius, synch the HDG bug, engage the A/P in HDG mode, select next radial using OBS, D/C A/P and turn right to intercept the next inbound radial track. The next radial heading - 90 degrees is a good heading to fly to intercept the next radial inbound. Synch the HDG Bug and engage the A/P in HDG then NAV mode.

Expanding Square

Single User waypoint XTK, DIS, TRK and OBS

1. Input user waypoint for center of expanding square search by Lat/Long.
2. Load a "direct to" user waypoint flight plan.
3. Set OBS to 360, intercept course line and cross waypoint at designated ground speed and altitude.
4. At DIS=0.7 turn right using a 20 degree bank angle to a TRK of 090. When XTK=0.7 turn right to 180 using a 20 degree bank angle, roll out to 180.
5. Establish heading to stay on XTK = 1.0 and TRK=180, use ground track bug if able.
6. When ground track stable, set OBS=090 at XTK=0.7 turn right using 20 degree bank angle, roll out to achieve TRK=090 and XTK=1.0.
7. Establish heading to stay on XTK = 1.0, TRK=090.
8. When ground track stable, set OBS=090 at XTK=0.7 turn right using 20 degree bank angle, roll out to achieve TRK=090 and XTK=1.0.
9. Establish heading to stay on XTK = 1.0, TRK=090.
10. When ground track stable, set OBS=090 at XTK=0.7 turn right using 20 degree bank angle, roll out to achieve TRK=090 and XTK=1.0.
11. Continue this process until the search pattern is completed, refer to figure on next slide.
Route Search

Using flight plan and XTK

Enter and activate a flight plan for the route using a combination of Airports, VORs, NDBs and user waypoints as appropriate. Note the true course for each leg of the flight plan.

Fly the required parallel track offset by using the MFD data bar for cross track information (XTK) relative to the flight plan route.

Fly the parallel track in A/P HDG mode, use the current track bug on the PFD HSI to assist maintaining the parallel track.

Questions?